Generalized quasilinear Schrödinger equations with critical growth
نویسندگان
چکیده
منابع مشابه
Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملquasilinear schrödinger equations involving critical exponents in $mathbb{textbf{r}}^2$
we study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{r}}^2$ with critical exponential growth. this model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملQuasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
متن کاملStanding waves with a critical frequency for nonlinear Schrödinger equations involving critical growth
This paper is concerned with the existence and qualitative property of standing wave solutions ψ(t, x) = e−iEt/h̄v(x) for the nonlinear Schrödinger equation h̄ ∂ψ ∂t + h̄2 2 ψ − V (x)ψ + |ψ |p−1ψ = 0 with E being a critical frequency in the sense that minRN V (x) = E. We show that there exists a standing wave which is trapped in a neighbourhood of isolated minimum points of V and whose amplitude g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2017
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.10.011